

Philadelphia University Faculty of Engineering

Student Name: Student Number:

Dept. of Electrical Engineering First Exam, Second Semester: 2018/2019

Course Title: Electromagnetics I

Date: 24/3/2019 Time Allowed: 50 Minutes

Course No: (610213) Lecturer: Dr. Mohammad Abu-Naser

No. of Pages: 3

Ouestion 1:

(35Mark)

Objectives: This question is related to Coulomb's law

Point charges 1 nC and -1 nC are located at (0, 1m, 1m) and (1m, 1m, 0), respectively. Determine the force on a 5 nC charge located at the origin.

$$\begin{aligned}
F_{13} &= \frac{K Q_1 Q_3}{|r_{13}|^3} |r_{13}| \\
F_{13} &= \frac{1}{|r_{13}|^3} |r_{13}| \\
F_{13} &= \frac{1}{|r_{13}|^3} |r_{13}| \\
F_{13} &= \frac{1}{|r_{13}|^3} |r_{13}| \\
&= \frac{1}{|r_{13}|^3} |r_{13}| \\
&= \frac{1}{|r_{13}|^3} |r_{13}| \\
&= \frac{1}{|r_{13}|^3} |r_{13}| \\
&= \frac{1}{|r_{23}|^3} |r_{23}| \\
&= \frac{1}{|r_{23}|^3} |$$

Objectives: This question is related to coordinate systems

Determine the total charge in the half sphere defined by

$$0 \le r \le 4m$$

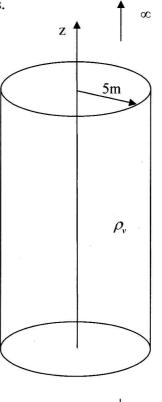
$$0 \le \theta \le \pi/2$$

$$0 \le \phi \le 2\pi$$

if
$$\rho_v = 5r^2 \,\mathrm{mC/m}^3$$
.

$$Q = \iiint_{r=0}^{2\pi} 5 r^2 r^2 \sin \theta d\theta d\phi dr$$

$$=5\frac{r^5}{5}\int_{6}^{4}\left(-\cos\theta\right)\int_{0}^{\frac{\pi}{2}}\phi\left(\frac{2\pi}{2}\right)^{\frac{\pi}{2}}$$


$$=5 \times \frac{45}{5} \times -(6-1) \times 2\pi$$

Objectives: This question is related to Gauss's law

An infinitely long cylinder along the z axis of radius r=5m carries a uniform charge

density ρ_{ν} (C/m³). Use Gauss's law to find D in all regions.

The problem is cylindrical so choose Gauss surface that is cylinder. Due to symmetry Thas only one component Hat is avially outward (in the i direction). The space is divided into two regions :-

D r < 5

Qenc = Th r2 Pv

Ø= \$0. Ls

Note that on the top and bottom surfaces the flux density

D'is transperted to the surface = Dids = 0

The only the surface that the blux penebrates is the

side surface \$=Dr Zarh

Apply Gauss's law

\$ = Qenc

Or 2/tr/k = T/Kr2Pv => Dr = Por C/m2

Que = Th52xlv = 25 Thlv

$$\phi = 2 \pi rh Or$$

Apply Gams's law

 $\phi = Qene$

$$\phi = Q_{enc}$$

 $2\pi / K Or = 25 \pi / K Pv$
 $\Rightarrow Dr = \frac{12.5 Pv}{r} C/m^2$